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Abstract—The analysis of failure loads and mechanisms of plated structures requires knowledge of
the elasto-plastic rigidities when elements of the structure are fully plastic. Previous attempts to
calculate these rigidities from a single-layer analysis have given results which differ from those
obtained by multi-layer analysis. It is shown that by using an exact representation of the Ilyushin
yield surface, and by considering the normal direction to that surface, it is possible to obtain a
unique stress distribution through the thickness of the plate, which allows the correct value of the
rigidities to be found. The reasons for the discrepancy are discussed, and it is concluded that it
arises from incompatible assumptions regarding the relative magnitudes of the elastic and plastic
strain components. A numerical example is given to illustrate the phenomenon.

NOMENCLATURE

The principal notation used in the paper is described below. Some other notation that is used only once is described
where it is used.

e strain vector at any position

f yield function in stress space (von Mises)

m non-dimensional flexural stress resultant vector

me, m,, m,, non-dimensional flexural stress resultant components
n non-dimensional in-plane stress resultant vector

n,, ny, N, non-dimensional in-plane stress resultant components
z non-dimensional position through thickness of plate
A matrix relating stress vector to plastic strain increment vector [eqn (27)]
C constant defining magnitude of normal vector

B*, C*, D* elasto-plastic rigidity sub-matrices [eqn (7)]

E elastic stiffness matrix

E* elasto-plastic rigidity matrix [eqn (21)]

E.E,E, see eqn (41)

F yield function in stress resultant space

F\,F, F, see eqns (35) (36)

F,F,,F, components of normal to yield surface

Ly=1L, through-thickness integrals [eqns (44), (45)]

P,P, P, quadratic strain intensity

0,00, quadratic stress resultant (not on yield surface)

Oy Oums Oy quadratic stress resultant on the yield surface

R defined in eqn (42)

S Young’s modulus

a, B,y parameter of the present formulation

%o, Bos Vo initial estimates of «, § and y

g mid-plane strain as vector

£, By By mid-plane strain components

K non-dimensional curvature vector

Ky Kyy Ky, non-dimensional curvature components

A plastic strain rate multiplier

n multiplier relating given set of Q, to the yield surface
Mo initial estimate of #

v, w defined in eqn (42)

4 non-dimensional stress vector.
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INTRODUCTION

The analysis of failure loads and failure mechanisms for plated structures requires knowl-
edge of the elasto-plastic rigidities when elements of the structure are fully plastic. These
rigidities can be calculated accurately by performing a multi-layer analysis, which requires
knowledge of the stress distribution through the thickness of the plate, but this requires
extensive computing resources, both of time and storage. It is more efficient to calculate
the rigidities from a single layer analysis, which relates to stress resultants. Rigidities
calculated by these two methods in the past did not agree, but the reasons for this were not
fully explored.

In a companion paper (Burgoyne and Brennan, 1993), the present authors have
presented a procedure which reanalyses Ilyushin’s exact yield surface defined in terms of
stress resultants, using new parameters. Unlike those used in Ilyushin’s original derivation,
these parameters allow the exact surface [as opposed to an approximation to it, such as
those described by Robinson (1971)] to be used in structural calculations. This allows the
direction of the normal to the stress resultant yield surface to be calculated accurately.

The normal direction in stress resultant space can be used as the basis of a calculation
of the elasto-plastic rigidities. Traditionally, these rigidities have been determined by
assuming that any deformation applied to a plate which is at a point on the full plasticity
surface consists of an elastic component, which corresponds to a movement in stress
resultant space around the yield surface, and a plastic strain component normal to the yield
surface. In this paper, it will be demonstrated that this analysis does not give the correct
rigidities. Instead, it will be shown that the normal direction to the surface defines the
direction of the plastic strain at each layer in the plate. This direction must be normal to
the stress yield surface at that layer, thus defining the stress throughout the plate, and
allowing the calculation of the elasto-plastic rigidities as though a multi-layer analysis had
been performed.

Reasons for the differences between the two methods will be discussed, and a numerical
example will be given which demonstrates the differences, and also shows how the new
parametric description of the surface allows efficient calculation of both the position and
the normal direction to the yield surface.

NOTATION

Burgoyne and Brennan (1993) showed how three quadratic stress intensities Q,, O,
and Q,, are defined in terms of six non-dimensional stress resultants #,, n,, n,,, m,, m, and
m,, by:

Qr = "i + n_yz' - nxny + 3n§y’
Qum = mn, +mn, —3(mn,+myn,) +3myn,,,
Q. = mi+ml—mm,+3m},. N
» Q> @ Will be taken to refer to points on the yield surface. The corresponding variables
p g
1, @12, O, will relate to a general point in Q-space not on the yield surface.
p

The corresponding non-dimensionalized mid-plane strains (¢, ¢,, &,,) and curvatures
(Kx, K,, ,,) were defined, from which quadratic strain intensities were obtained:

P, = del+de, de, +de?+0.25de;,,
P, = 4(de, dx,+0.5(de, dx, +dg, dx,) +de, dx, +0.25 dg,, di,., ),
P, = 16(dx?+dxk, dx, +dk] +0.25dk},). )

In this paper, it will be possible to work in terms of three component vectors. Thus, in
stress resultant space:
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th ————— Edge of surface (QQm = Qu7)
Line of symmetry (Q,, = Q)
Q,. constant (intervals of 0.05)
Qn constant (intervals of 0.1)
Q, constant (intervals of 0.1)

Fig. 1. Three-dimensional view of exact Ilyushin yield surface.

n=(n,n,n,) and m=(m,m,m,),

&= (&,8,6,) and &= (KK,K,). 3)

[The true “engineering” strains and curvatures are given by eg,00(1—~v?)/S and
k.464(1 —v?)/(St) respectively, where S is Young’s Modulus.]

The exact Ilyushin full plasticity yield surface will be denoted by F. Position through
the thickness of the plate will be defined by z, with the surfaces of the plate defined by
z=+1

In stress space, the vectors defining stress and strain will be given by

g = (O'X, gy, axy) and e= (ex, eyaexy) (4)

and the corresponding von Mises’ yield surface will be denoted by f.

The Ilyushin yield surface (Fig. 1) can be represented in (Q,, Q... Q) space as a
function of two independent parameters o and f, and a dependent parameter y (Burgoyne
and Brennan, 1993). The parameters are defined as

P
5 =, y=a—p. ®)

The surface is symmetrical about the line Q,, = 0, and is bounded at the edges by the
Schwarz inequality :

0.0n = Qi 6

The surface is everywhere smooth, except at one corner where Q, = 1, where there is a
discontinuity of slope. The surface has been described in detail in Burgoyne and Brennan
(1993), where methods have been described by which points on the surface can be derived
as a linear multiple of a general point in Q-space, and the corresponding normal direction
to the surface calculated. These methods are used extensively in this paper.

ELASTO-PLASTIC RIGIDITIES

For the analysis of plates and shells, it is necessary to determine the elasto-plastic
rigidities, which relate the changes in the mid-plane strains and curvatures to changes in
the stress resultants. The relationship that is sought is of the form
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dn C* B*[de
dm |~ |B* D*||dx| 7

Two approaches to the calculation of these rigidities will be considered ; one, due to Crisfield
(1973), determines them by considering the normal direction to the yield surface itself. The
other, to be presented here, derives the rigidities from the stresses within the plate, but
eventually is related to the properties of the yield surface. The three sub-matrices B*, C*
and D* should all be symmetrical and indefinite, but in the first method the B* matrix is
not. The new method leads to an improved formulation which satisfies the symmetry
conditions.

(1) Traditional derivation

This approach to the derivation of the elasto-plastic rigidities, used by a number of
researchers (Crisfield, 1973 ; Frieze, 1975 ; Bieniek and Funaro, 1976 ; Eggers and Kroplin,
1978 ; Dinis and Owen, 1982), depends only on the stress resultants n and m.

For plastic flow to take place, the stress resultants must remain on the yield
surface F:

OF" OF"

It is then assumed that the general normality law holds in stress resultant space, so that

oF oF
de, = /15; and dx, = lé—n-‘. )]
The incremental form of Hooke’s Law then gives
oF 4 oF
dan(de—Aa—n>, dm=§E(dx—-/16—n;), 10)
where E is the non-dimensional elastic stiffness matrix
1 v 0
E=|v 1 0 . (an
o 0 (1-v)/2

The multiplier 4 may be found by inserting eqn 10 into the tangency condition (8), giving

1 /oFT 4 9FT
where
OF' _OF 4 9F" _0F
R= ™3 om Com (13)

Substitution of these values into eqns (10) leads to expressions for the B*, C* and D*
matrices : ‘



Calculation of elasto-plastic rigidities 1137

oF oF"
® o _
B 3RE60 6mE’
1_ 0F 0FT
* - F— _F.L 2
¢ E REan on

4. 16 OF OF
*—_F
D == ok m om & (14)

The resulting 6 x 6 matrix is singular, and an applied strain increment in a direction normal
to the yield surface causes no change in the stress resultants. However, the B* matrix is not
itself symmetrical, which it should be since it is a stiffness matrix [see eqn (24) below].
Symmetry is preserved only when

LiyeLL as)

n  om
which occurs along @,0,, = QZ,. Then,

oF" _ oF

(C2+4/3)-——Ea—— (16)
and
4
B¥ = — §CEp’
C —EUCZEps
4 16
* e
D* = 3 9 E,, {an
where
OFT OF
E, = -E am amE' (18)

The condition given by eqn (15) corresponds to a rectangular stress block each side of the
depth given by z = B. For a rectangular stress distribution B* must be zero, which only
occurs if C is zero. Under these circumstances, C* = E, which is clearly an error.

The reason for this discrepancy relates to one of the assumptions made in the original
derivation of the yield surface: The strains were assumed to be large, and thus wholly
plastic.

Consider a point 4 on the stress resultant yield surface ; there must be a corresponding
very large strain resultant distribution normal to the yield surface at that point. At an
infinitesimally adjacent point B on the yield surface, there must be a similarly large strain
resultant distribution normal to the surface at B. An (infinitesimal) movement in stress
resultant space from 4 to B must be accompanied by a change in the strain resultant equal
to the difference between the two strain resultant states. This change will nof be small.

When considering movement around the yield surface in stress space, it is assumed
that the change in strain is made up of an elastic component determined from the stress
change by Hooke’s Law, and a plastic component normal to the yield surface. Both
components will be of the same order of magnitude, so stress changes can be associated
with strain changes and elasto-plastic stiffnesses derived. As shown in the previous
paragraph, when considering stress resultant space, the strain resultant components are not
of the same order of magnitude, so no such association can be derived and the rigidities
cannot be determined by a similar argument.
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In effect, this means that the normality rule cannot be applied in stress resultant space
when only small movements are being considered, which is the case when deriving local
rigidities.

(ii) Revised formulation

The new formulation, presented here, does not rely on the assumption that the nor-
mality rule applies in stress resultant space, and will be shown to satisfy all requirements
of the symmetry conditions. Instead, the normality rule is applied to the stresses at each
level within the plate. However, it will be shown that the rigidities can still be related to the
properties of the stress resultant yield surface at the point in question, thus fulfilling one of
the prime requirements of a single layer analysis, which is that it must be possible to work
entirely in terms of stress resultants.

For the plane stress state in which continued plastic deformation is occurring, the
modified form of Hooke’s Law

of
doe=E (de—-/l%) (19)
and the tangency condition
;) T
df = —f——da =0 (20)
il

are sufficient to determine the plastic multiplier 4 and to establish a unique relationship
between increments of stress do and increments of strain de of the form

do = E*de, 2n
where
T
* __ T __ _
E E @2 . g . (22)
de oo

This process was first obtained by Yamada ez al. (1968). E* is termed the elasto-plastic
modular matrix and replaces the elastic matrix E. It is a symmetric and singular 3x3
matrix, and for an ideal elastic-plastic material is dependent on the current stress level 6.

The assumption that the strain varies linearly through the thickness can be expressed
in incremental form

de = de+4zdk (23)

and defining the stress resultant increment as
dn = fda dz, dm =4 J zde dz 24)

allows the rigidities in eqn (7) to be found.
The elasto-plastic tangential rigidities B*, C* and D* are defined by
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1/2
C* = f E*dz,

—1/2

12
B* = 4J zE*dz,

-1/2

1/2
D* = 16J z?E*dz. (295

—-1/2

In general, these integrals cannot be explicitly determined, but for the case of a stress
resultant distribution that satisfies the Ilyushin criterion, an exact solution may be obtained.

Consider a given set of stress resultsnts (n, m). The parameters f and y may be
determined by the methods given in the earlier paper (Burgoyne and Brennan, 1993), and
the normals df/dn and df /0m determined.

From the normality law, the unique stress distribution may be determined. This is a
critical step, as it allows stress resultant changes to be related to stress changes.

The strict mathematical form of the normality law in stress resultant space is

de de, OF, /an:I
= =1 , 26
[dk] [dx,,:I ! |:6F /0m (26)
since the assumption has already been made that the elastic component is small by com-
parison with the plastic component.
In stress space, using von Mises’ yield criterion, the stress state can be related to the

change in the plastic strain component (and hence, in the present case, the change in the
total strain component), by

1 1
o= 312(Z)Adep = WZ—)Ade, (27)
where
21 0
A=[1 2 o0 (28)
0 0 05
and
1
da(z) = ﬁ\/def +de, de, +de?+0.25de?, . (29)

The standard linear assumption about strains is made [eqn (23)] and substitution of eqn
(26) allows the strain at any level to be related to the normal direction to the stress resultant
yield surface

OF  OF
de =1, <a_n +4za—m>. (30)

Thus,

A oF OoF
c __312(z)A<6_n +4251;>. 31
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It is now necessary to eliminate, or find expressions for, the two A terms. If eqn (23) is
substituted into eqn (29), and the result expanded, an expression for 1, is obtained :

1
15(2) = —= /Po+22Py + P22, 32
2 \/5 ( )

Substitution of eqn (26) gives

s ()

¢~ 1\ \on, on, on, = \on, 4\on,.) )
5F£+l<.‘?59£+ 5F.?_§)+ff_‘3€. 1 oF oF
an, om, * 2\an, om, | on, om,) " on, om, * 4 on,, om,,)’

OF\ OF OF OF 1(@;«*2
— 12 {5 Il Sl 2
Fe '6‘“‘<<amx) *+ om, am‘v““(am,v) *3 amx_v) ) (33)

If these equations are substituted into eqns (32), and the result into eqn (31), the 4, term
cancels from the numerator and the denominator, to give

o

7= 3,11(z) A [%5 +4Z§£]’ (34
where
32) = %ﬁm (35)
in which

F _(6F)2+6_F_6_F (6F>2+1( ap)Z

' =\an,) T om, om, " \on,) Ta\on,) "
F. = o 2F OF l(aF}?ﬁ oF aF)+E§ oF 1 0F 6F>
2= Nan, am, " 2\n, om, | on, om,) " on, om, © 4 on,, om,,)’

OF\* OF OF OF 1(6F)2>
F"“((M)*%M*(%)*Z my,) ) (36)

from which the stress at any level can be uniquely determined. Now,

Y _ Ao, @37
do

which allows a simple relationship to be written between the von Mises’ normals at each
level and the Ilyushin stress resultant normals:

of t [oF 6F)
Zm |2 42— ). 38

36 3i(z) (an Z om (38)
Now, consider some finite strain resultant increment (de, dk), being applied in the above
stress state, such that no unloading from yield takes place at any level in the plate. If the
direction of de and dx does not coincide with the surface normal, then a change of stress
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resultants dn and dm must take place such that the revised resultants remain on the yield
surface.

At each level z, the stress state corresponding to the exact Ilyushin yield surface is
given by eqn (34). 1t is easily verified that

é‘f=

*
E do

0, (39

so that if de and df/de are not coincident then a change in stress will occur. Using (22), the
expression for E* may be written:

16E,,z*+8E,,,z+E,

E*=E—
R(16z*+8yz+w) ’

(40)

where

oF oF"
om om
OF OFT _0F OF"

om a0 CtE oL am

OF oFY
én én

E,=E

2Emn = E E’

E, =E E, 41

and

8FT _oF
R=m Eom’
_10F"_0F 1 F_0oF
"Rom on R on ém’
1o o
?)_R on on’

¥
42

Equation (40) is of a form which may readily be integrated, so that the elasto-plastic
rigidities are

‘ 1
C*=E- E (L2Em+2LIEmn+L0En)3

1
B* = e E(LJEm”"‘ZLZEmn_'—LIE")’

4

1
D* = “E— - (L B, +2L:E, + L,E,), (43)
3R

where the constants L; are given by

1/2 (4Z)£
Li= f_ 172 1622 + 8¢z+wdz’ (44)

whence

SAS 30:8-1
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S S PO itiL) (,3.%)]
L, 4\/@*_55[\:3111 (\/5——415 +tan \/5——1,02 .

i 4+4¢+w
L, = §]0ge ’m’ —y Ly,

L2 = I—Q)L()“"‘lellq,
L3 = —wL)“'ZQ{/Lz,

4

These integrals may be evaluated for the cases where @ > % which can be shown to be
identical to the condition imposed by the Schwarz inequality (6), and so is always satisfied.

The case of @ = §/* corresponds to the boundary 0,0,, = Q2,. It may be shown that
E* is independent of z, which is associated with the fact that ¢ is constant through the
depth for this case. The elasto-plastic rigidities are then simply

C*=E*, B*=0, D*=3E* (46)

The above approach is exact for a point on the liyushin yield surface subject to an arbitrary
but finite strain resultant increment. Comparisons with the results obtained from multi-
layer analyses show that this method gives the correct rigidities, whereas the traditional
analysis gives rigidities which differ significantly.

NUMERICAL EXAMPLE

As an example of the use of the equations and theory described here, and to illustrate
the techniques described in the earlier paper (Burgoyne and Brennan, 1993), consider an
example. Suppose that the non-dimensional stress resultants are known as a result of some
other calculation. In this case, take:

n = (0.20,0.10,0.04), m = (-0.01, —0.02,0.01).

These values are clearly dominated by the in-plane loading, and relate to a point close to
the singular point on the yield surface. This will be reflected several times in the subsequent
calculations, where convergence will not be as rapid as it would be for a general point on
the surface. The corresponding quadratic stress intensities are:

(01,05, 0,,) = (0.0348,0.0006, —0.0003).

The position on the exact Ilyushin yield surface, (@, =nQ,, On = 102, @um = nQ,,) and
the corresponding parameters «, § and y are sought. The initial estimate of # is derived
from Ivanov’'s approximate yield surface (Robinson, 1971)

o = 28.2676

and the other starting values for the iteration can be found from the normal direction of
the surface:

(%, Bo, 7o) = (0.46127,0.66930,0.01331).

These values are used as the starting point for an iterative procedure. In this case, six
iterative steps are needed for convergence, which is more than usual and reflects the fact
that the point in question is near the discontinuity in slope of the surface. The final values
for o, f and y are
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(2, B,7) = (0.389085134,0.616994746, 0.008402618)

and the corresponding value of # is 28.25238.
The final values of the quadratic stress resultants are then

0, = 0983182741,
Om = —0.008475714,
0.= 0.016951427.

Two approximate yield surfaces have been quite widely used, referred to as the approximate
Ilyushin yield surface and the Ivanov yield surface (Robinson, 1971). Substitution of the
above values into the approximate Ilyushin yield surface, gives a value of 1.00503 and in
the Ivanov yield surface gives 0.99946. Both of these quantities are close to unity, which
indicates that the value of the approximating function is locally quite good ; other starting
stress resultants would give points which differed much more significantly between the
various yield surfaces. The normal direction to the yield surface is also of interest however,
Table 1 shows both the position of the appropriate point on the yield surface, and also the
unit normal direction to the yield surface at that point, for all three surfaces, expressed in
the three-dimensional space of the quadratic stress resultants. The angular differences
between the normal directions of the approximate surfaces and the normal to the exact
surface are also shown.

Table 1. Comparisons between the yield surfaces in quadratic stress resultant space

Position on yield surface Unit normal to yield surface

Exact Approx. Exact Approx.

Ilyushin Ivanov Ilyushin Iyushin Ivanov Ilyushin
0, 0.983183 0.983714 0.978264 0.711826 0.730224 0.654654
Oum —0.008476 —0.008480 —0.008433 —0.554576 —~0.519496 —0.377964
O 0.016951 0.016961 0.016867 0.430987 0.443731 0.654654
Difference between normal directions (radians) 0.04160 0.29170

Similarly, both the position and normal direction of the appropriate point on the six-
dimensional yield surface in stress resultant space can also be found, as shown in Table 2.

Table 2. Comparisons between the yield surfaces in stress resultant space

Position on yield surface

Unit normal to yield surface

Exact Approx. Exact Approx.

Ilyushin Ivanov Ilyushin Ilyushin Ivanov Ilyushin
n, 1.063059 1.063346 1.060397 0.763681 0.769390 0.779425
Ry, 0.212612 0.212669 0.212079 0.551447 0.560776 0.578540
n, 0.531530 0.531673 0.530199 0.029749 0.027368 0.022500
m, —0.053153 —0.053167 —0.053020 —0.297488 —0.273680 —0.225001
my, 0.053153 0.053167 0.053020 —0.145514 —0.125437 —0.024115
m, —0.106306 —0.106335 —0.106040 —0.046238 —0.046753 —0.077943
Difference between normal directions (radians) 0.03311 0.14857

The Tangential Rigidity Matrix [as in eqn (7)] can then be determined by both the
present theory and the traditional theory, using the Q, values determined above from the
Exact Hlyushin Yield Surface.

By the present theory [eqns (42)-(44)], the rigidity matrix becomes :
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[ +0.1917 +0.0513 —0.2209 +0.0891 +0.0935 —0.0326]
+0.9175 —0.0629 +0.0935 +0.0428 +0.0135

+0.2852 —0.0326 +0.0135 —0.0292

+0.3088 +0.1122 —0.3037 | ,

(Symmetric) +1.2366 —0.0716
+0.3648

while by the traditional theory [eqn (14)], the matrix is:

[ 40.2943 +0.0636 —0.1763 +0.3792 +0.1650 +0.0620
+0.9208 —0.0590 +0.1270 +0.0552 +0.0208

+0.3060 +0.0947 +0.0412 +0.0155

+1.1296 +0.3113 —0.0333

(Symmetric) +1.2948 —0.0145
+0.4612 |

Both matrices are indeterminate, as would be expected, but the matrix derived from the
present analysis satisfies the more stringent conditions given earlier ; it is also the matrix to
which a multi-layer analysis would converge for large strains. Similar matrices can be
derived by both methods from the Ivanov and Approximate Ityushin Yield Surfaces, and
show further differences from the correct version derived here.

[oF) Og Jo
—_—s — — 0 5

T Oy Oy

Fig. 2. Stress variation through thickness for n = (0.20, 0.10, 0.04), m = (—0.01, —0.02, 0.01).

Finally, the stresses throughout the thickness of the plate can be determined from eqns
(33)—(35). These are shown in Fig. 2. Although there is no stress reversal in this case (since
in-plane effects are dominant), there are significant changes in stress through the thickness
of the plate.

CONCLUSIONS

It has been shown that the traditional method of deriving the elasto-plastic rigidity
matrix in stress resultant space is in error, because the assumptions made about the relative
magnitudes of elastic and plastic strain components do not hold in stress resultant space.
However, it has also been shown that by making use of the normal direction to the exact
Ilyushin yield surface, the strain distribution through the plate can be determined, from
which the stress distribution can be found from von Mises’ yield condition. This knowledge
then allows the elasto-plastic rigidities to be calculated, as though a multi-layer analysis in
terms of stresses had been undertaken.

A numerical example has been carried out to demonstrate the numerical procedures
described, and to show the significant differences between the two theories.
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